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Introduction

These are notes of lectures given at the “School on Algebraic K-theory
and its Applications” at the Abdus Salam International Centre for Theoret-
ical Physics, Trieste in May 2007. In these lectures I tried to give some idea
about the modern state of the theory of quadratic forms, and to outline its
connections to K-theory. Here K-theory is understood in a broader sense.
It includes such classical parts as Milnor’s K-theory as well as new areas
related to Motivic Homotopic Topology. From the point of view of the lat-
ter, algebraic K-theory provides an example of the generalised cohomology
theory on the category of algebraic varieties. It is related to other theories
of the same sort, and, in particular, to the universal one among them - the
Algebraic Cobordism theory.

It appears that the connection of quadratic forms to K-theory discovered
long ago by Milnor is just the reflection of the fact that these objects de-
scribe homology and homotopy groups of a point in the motivic world, and
are really basic for the Motivic Homotopic category. In turn, the motivic
methods can be used to obtain information on a particular quadratic form.
Here one studies geometric properties of the canonical homogeneous varieties
associated to a given form by using Chow groups and Algebraic Cobordism
theory. The applications include computations of the classical invariants of
quadratic forms, as well as that of the related u-invariant of fields. I will
touch all these subjects, and also will try to briefly introduce the reader
to Chow groups, motives, Algebraic Cobordism theory and cohomological
operations in the latter.

Lecture 1

Quadratic forms and their invariants

Let k be a field of characteristic different from 2.
Let V be some finite dimensional vector space over k. Quadratic form on

V is a map q : V → k which is a diagonal part of some symmetric bilinear
form Bq : Vq × Vq → k. That is, q(v) = Bq(v, v). It is easy to see that under
our characteristic assumption Bq can be reconstructed from q uniquely.

The form is called nondegenerate if the respective symmetric bilinear
form is, in other words, if no vector in V is orthogonal to the whole V :
V ⊥ = 0.
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Under our assumptions, each quadratic form is diagonalisable, that is,
one can choose the coordinates x1, . . . , xn on V so that q((x1, . . . , xn)) =
a1x2

1 + . . . + anx2
n for certain a1, . . . , an ∈ k∗. We will denote such form

〈a1, . . . , an〉, and sometimes will call ai-the eigenvalues.
Warning: in the contrast to the case of linear transformation, these

“eigenvalues” are not defined uniquely, so in some other orthogonal coor-
dinates the same form can be presented by 〈b1, . . . , bn〉 for completely differ-
ent set b1, . . . , bn ∈ k∗. Try this on the example 〈1,−1〉 and 〈a,−a〉, where
a ∈ k∗ (hint: show that both of them are isomorphic to the form xy).

On the set of quadratic forms we have two operations: + and ·
(q1, V1) + (q2, V2) := (q1 ⊥ q2, V1 ⊕ V2), where (q1 ⊥ q2)((v1, v2)) =

q1(v1) + q2(v2), and
(q1, V1) · (q2, V2) := (q1 ⊗ q2, V1 ⊗ V2), where (q1 ⊗ q2)(v1 ⊗ v2) = q1(v1) ·

q2(v2).

Definition 0.1 Define W̃ (k) - the Grothendieck-Witt ring of k as the Grothen-
dieck group (group completion) of the monoid of isomorphism classes of non-
degenerate quadratic forms over k with respect to operation +. Notice, that
the operations + and · naturally descend to W̃ (k) and supply it with the
structure of the commutative ring.

Why study quadratic forms?
Let me give you several reasons why quadratic forms can be interesting.

1) Connected to K-theory.
More precisely, to Milnors K-theory and motivic cohomology.
Consider form H =< 1,−1 > called elementary hyperbolic form. It is an

easy observation, that for arbitrary quadratic form q, H · q = H ⊥ . . . ⊥ H
(the number of copies = dim(q)). Thus the image of the map Z ·H→ W̃ (k)
is an ideal in W̃ (k).

Definition 0.2 Define W (k) - the Witt ring of k as the quotient W̃ (k)/Z·H.

Inside W (k) one has the ideal I of even-dimensional forms (notice that
the dimension modulo 2 is well-defined on W (k)). This ideal gives rise to
the multiplicative filtration

W (k) ⊃ I ⊃ I2 ⊃ I3 ⊃ . . . ,
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and one can consider the associated graded ring

grI•(W (k)) := W (k)/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . .

This ring is basically of “the same size” as W (k), but with the operations +
and · somewhat damaged (some information is lost).

Milnor “Conjecture” on quadratic forms relates our graded ring
with the ring called Milnor K-theory, where the latter is defined as follows.
Consider k∗ as an abelian group = Z-module. Let TZ(k∗) be the tensor
algebra of this module over Z, that is:

TZ(k∗) = Z⊕ (k∗)⊕ (k∗ ⊗Z k∗)⊕ (k∗ ⊗Z k∗ ⊗Z k∗)⊕ . . . .

Definition 0.3 Milnor K-theory of k is defined as a quotient of the tensor
algebra above by the explicit quadratic relations:

KM
∗ (k) := TZ(k∗)/(a ⊗ (1− a), a ∈ k∗\1).

Milnor conjecture on quadratic forms states that KM
∗ (k)/2 is naturally

isomorphic to grI•(W (k)). And Milnor K-theory is a particular case of mo-
tivic cohomology. So, our ring can be also interpreted as⊕n Hn,n

M (Spec(k), Z/2)
(notice, that in algebraic geometry, in contrast to topology, the cohomol-
ogy are numbered by two integers, as opposed to one). If one uses also
Beilinson-Lichtenbaum “Conjecture” (which follows from the Milnors one,
and so is settled), one can see that the knowledge of quadratic forms over
k gives one the complete knowledge of motivic cohomology of a point with
Z/2-coefficients.

2) Related to stable homotopy groups of spheres. In a sense, it is just the
sharpened version of the reason 1).

One of the most important questions in topology (central to the math-
ematics as a whole) is the study of stable homotopy groups of spheres. Ho-
motopy groups of spheres πn(Sm) count the continuous maps Sn → Sm

up to homotopy (two maps are called homotopic, if you can continuously
“pull” one into the other). There is a suspension operation Σ such that
Σ(Sn) = Sn+1; being a functor, it acts also on the homotopy classes of maps
and provides a group homomorphism πn(Sn) → πn+1(Sm+1). The stable
homotopy groups are defined as

πs
n(S0) := lim

N→∞
πn+N (SN ).
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Computation of these groups was performed only for small number of n.
In algebraic geometry both homotopy and homology groups are numer-

ated by two integers (the world here is more complicated - there are two
suspensions).

It was proven by F. Morel that the Grothendieck-Witt ring of quadratic
forms over k describes the (0, 0) stable homotopy group of spheres:

W̃ (k)
naturally∼= πs

0,0(S
0).

So, studying quadratic forms we study the homotopy groups of spheres,
and the experience obtained here in the end could prove useful back in the
topological world.

3) Quadrics give examples of homogeneous varieties.
To each quadratic form q one can assign the respective projective quadric

Q ⊂ P(Vq) given by the equation q = 0. If q is nondegenerate, the respec-
tive quadratic hypersurface will be smooth (no singularities). The group of
orthogonal linear transformation preserving the form q (denoted O(q)) acts
naturally on Q, and the action is transitive in certain sense. Thus, Q is a
projective homogeneous variety for the algebraic group O(q). Other homo-
geneous varieties for other algebraic groups behave in many respects similar
to the ones for the orthogonal group. Hence, studying the quadrics we get
certain insight into the behaviour of other homogeneous varieties. Useful
to mention, that all such varieties are somewhat trivial over algebraically
closed field, and so here we are dealing with the pure extract of the effects
which distinguish arbitrary field from the algebraically closed one (can be
then used to extend the results on some other more complicated varieties
from the case of algebraically closed field to that of arbitrary one).

Connection to K-theory
If you just have some arbitrary form at your disposal it is not very easy

to see much K-theory in it. But some forms are better than others, and
with the good forms the connection is well-visible. The best such forms are
Pfister forms.

Pfister forms

Definition 0.4 Let a ∈ k∗. The 1-fold Pfister form 〈〈a〉〉 is the 2-dimensional
form 〈1,−a〉.

If now a1, . . . , an ∈ k∗, then n-fold Pfister form 〈〈a1, . . . , an〉〉 is the prod-
uct 〈〈a1〉〉 ⊗ . . .⊗ 〈〈an〉〉.
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Examples:

n = 1 〈〈a〉〉 = Nrmk
√

a/k - the norm map from the the quadratic extension.

n = 2 〈〈a, b〉〉 = NrdQuat({a,b},k)/k - the reduced norm map in the Quaternion
algebra.

n = 3 〈〈a, b, c〉〉 = NrdO({a,b,c},k)/k - the reduced norm map in the Octonion
algebra.

In all three cases we have an algebra structure on the underlying vector
space of quadratic form, that is a bilinear operation ∗ : V × V → V such
that

q(x ∗ y) = q(x) · q(y)

(although, for n = 2 the operation is not commutative, and for n = 3 not
even associative).

For n > 3 it is still possible to define such an operation ∗, but it will not
be bilinear, but only linear in the 1-st coordinate, and rational in the 2-nd.
And Pfister forms are the only forms for which such multiplicativity holds (if
you demand this property not just over k but also over all extensions F/k).

The quadratic form q is called isotropic if it represents zero nontrivially
(that is, there is v .= 0, such that q(v) = 0). This property is equivalent to the
fact that H is a direct summand in our form: q = H ⊥ q′. For each quadratic
form q there is unique anisotropic form qan such that q = H ⊥ . . . ⊥ H ⊥ qan,
and the number of hyperbolic summands iW (q) is called the Witt index (of
course, it is also uniquely determined). The forms for which dim(qan) ! 1
(almost nothing left) are called completely split. Notice that the form is
anisotropic if and only if the respective projective quadric Q has no k-rational
points at all.

The Main Property of Pfister forms is:

Pfister form is isotropic ⇔ it is completely split

Sometimes two sets of parameters a1, . . . , an and b1, . . . , bn define the
same (isomorphic) Pfister form. It appears that this happens iff there is
an equality of the respective pure symbols {a1, . . . , an} = {b1, . . . , bn} as
elements of KM

n (k)/2 (pure symbol {c1, . . . , cm} is just the product {c1}· . . . ·
{cm} of elements of degree 1 in KM

∗ (k), where KM
1 (k) is naturally identified

with k∗).
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Thus, the Pfister form depends only on pure symbol (which is also re-
constructed from the form uniquely), and we can denote it as 〈〈α〉〉, for pure
symbol α ∈ KM

n (k)/2.
The Milnor map in the isomorphism from the Milnor “Conjecture”

KM
∗ (k)/2 φ→ grI•(W (k))

is defined as identity on 0-degree component (isomorphic to Z/2), is given
by φ({a}) = 〈〈a〉〉(mod.I2) on the component of degree 1, and then uniquely
extended as a homomorphism of algebras (the left algebra is generated by
the first degree component, and it is not difficult to see that φ respects our
explicit quadratic relations a ⊗ (1 − a)). Thus under the Milnor map the
pure symbols goes to the respective Pfister forms (modulo In+1).

In a meantime, we observe that to each Pfister form we can assign two
invariants:

foldness = n, and pure symbol α ∈ KM
n (k)/2,

from which the form itself can be reconstructed.
But Pfister forms live only in dimensions of the type 2n. What about

other dimensions? In any dimension there is a “substitute” for the Pfister
form, which, may be, not as good as the Pfister form itself, but still is the best
thing one can find there. These are so-called excellent forms. To construct
an excellent form of dimension d, one has to start by presenting d in the
form 2r1 − 2r2 + 2r3 − . . . ± 2rs , where r1 > r2 > . . . > rs−1 > rs + 1 " 1
(one can easily check that there is 1 − 1 correspondence between N and
such sequences). then for each 1 ! i ! s one has to choose pure symbol
αi ∈ KM

ri
(k)/2 in such a way that αs divides αs−1 divides ... divides α1.

Notice that β = {b1, . . . , bl} divides α = {a1, . . . , am} in KM
∗ (k)/2 if and

only if our symbols have other presentations: β = {c1, . . . , cl} and α =
{c1, . . . , cl, dl+1, . . . , dm}.

In particular, if β divides α, then 〈〈β〉〉 is naturally a subform of 〈〈α〉〉
(since 〈1〉 is a subform of 〈〈dl+1, . . . , dm〉〉). In particular, in our situation,
〈〈α1〉〉 ⊃ 〈〈α2〉〉 ⊃ . . . ⊃ 〈〈αs〉〉. Using this fact and the decreasing induction
on r one can define the form 〈〈αr〉〉− 〈〈αr+1〉〉+ . . .± 〈〈αs〉〉 as a subform (and
a direct summand) of 〈〈αr〉〉 orthogonal to 〈〈αr+1〉〉 − . . . ∓ 〈〈αs〉〉. It follows
from the definition that the dimension of the obtained form will be exactly
d = 2r1 − 2r2 + . . . ± 2rs .
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Examples:

d = 2n : then excellent form is just the Pfister form

d = 5 : the form 〈1,−c, ac, bc,−abc〉 is excellent, a, b, c,∈ k∗.
r1 = 3, r2 = 2, r3 = 0, α1 = {a, b, c}, α2 = {a, b}, α3 = 1 = {∅}.

d = 6 : the form 〈〈a〉〉 · 〈−b,−c, bc〉 is excellent. r1 = 3, r2 = 1,
α1 = {a, b, c}, α2 = {a}.

We observe that each excellent form produces invariants (which deter-
mine it, in turn): numbers r1, . . . , rs, and pure symbols α1 ∈ KM

r1
(k)/2,. . .,αs ∈

KM
rs

(k)/2.
So, as the first approximation, we can expect that each quadratic form

produces a series of invariants living in the groups of the type K0,K1,K2, . . .,
where invariants of type K0 are discrete invariants taking values in the dis-
crete groups (collection of integers), and the invariants of type K1, K2, etc.
... are taking values in more and more “continuous groups” (where we count
K2 more continuous than K1).

Lecture 2

Chow groups and motives

We will be working with the algebraic varieties, which we always assume
to be quasiprojective. Quasiprojective variety is an open subvariety in the
projective variety. And the latter one is just a closed subvariety of the
projective space PN , that is subvariety given by the set of (homogeneous)
equations f1, . . . , fr. The same quasiprojective variety can be embedded in
different projective spaces: PN ⊃ X ⊂ PM (in particular, one can define
precisely when such subvarieties are isomorphic).

Algebraic variety can be covered by affine open subvarieties. Affine vari-
eties correspond to commutative rings (finitely generated, in our case). This
correspondence has the form

R − ring ↔ Spec(R),

where Spec(R) is called the spectrum of R, and R, in turn is a ring of regular
functions on the algebraic variety Spec(R). The above correspondence is
contravariant:

φ : S → R ↔ φ∨ : Spec(R)→ Spec(S).
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In our situation, affine varieties are just the closed subvarieties of affine
space An = Spec(k[x1, . . . , xn]) which is just the translation into geometric
language of the fact that the respective rings are finitely generated and so are
the quotient rings of the polynomial ring: R = k[x1 . . . , xn]/(f1, . . . , fr). Of
course, the same variety can be embedded into many different affine spaces
- just choose another set of k-algebra generators y1, . . . , ym and present R
as k[y1 . . . , ym]/(g1, . . . , gs).

Algebraic varieties have points. Points of the affine variety Spec(R) are
the prime ideals P ⊂ R (that is, such ideals that for any x, y ∈ R, x · y ∈ P
implies that either x, or y belongs to P ). The morphism of affine varieties
φ∨ : Spec(R) → Spec(S) acts on points: P 3→ φ−1(P ). If X is covered by
affine open varieties X = ∪iUi, then

( points of X) =
∐

i

( points of Ui)/(ident.),

where we identify points of Ui ∩ Uj in Ui and Uj.
In contrast to topology and usual geometry, the points have different

dimensions. It is sufficient to consider the case of affine variety.

dim(P ) = max{d| ∃ chain P = P0 ⊂ P1 ⊂ . . . ⊂ Pd of distinct prime ideals}.

Points of dimension 0 are exactly the maximal ideals in R. If R has no zero
divisors then the ideal (0) is prime, and the respective point is called the
generic point. In such a case the dimension of a variety is just the dimension
of its generic point.

To each point one can assign the residue field k(x). Namely, if P is
prime, then the subset T = R\P is multiplicative (T · T ⊂ T ), and we can
localise: RT−1 will be a local ring, and PT−1 is the only maximal ideal in it.
k(P ) := RT−1/PT−1. The dimension of a point is just the transcendence
degree trdeg(k(P )/k) of its residue field over k. Any regular function r on
Spec(R) (that is, an element of R), can be evaluated at P with value in
k(P ):

R→ RT−1 → RT−1/PT−1 = k(P ).

Notice that all these fields k(P ) come with the natural embedding k ⊂ k(P ),
so if one considers only the case of closed points over algebraically closed field
k, then all the residue fields are identified, and the evaluation takes values
in the same field k (as one used to).
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Example: X = Spec(k[x1, . . . , xn]) = An. Then dim(X) = n, residue
field of a generic point is the field of rational functions k(x1, . . . , xn), and as
a maximal chain of prime ideals one can choose

(x1, . . . , xn) ⊃ (x1, . . . , xn−1) ⊃ . . . ⊃ (x1) ⊃ (0).

Algebraic variety is called irreducible if all of its open affine subvarieties
are, and an affine variety X = Spec(R) is irreducible, if and only if R has
no 0-divisors (only “one” generic point).

Examples:

1) Spec(k[x, y]/(xy)) is reducible (consists of the union of x-axis and y-
axis on x, y-plane - two components).

2) Spec(k[x, y]/(y − x3)) is irreducible (consists of just one component).

If (as in the examples above) our variety is a hypersurface in the affine space
(given by just one equation), then one simply needs to check if the respective
polynomial is decomposable, but if the variety is defined by several equations
it could be quite difficult to check the irreducibility.

There is 1− 1 correspondence

{ irred. closed subvar. of X} ↔ {points ofX}

where each point is a generic point of some unique closed irreducible subva-
riety.

Chow groups
Let X be an algebraic variety, then one can define the Chow group of

d-dimensional cycles on X modulo rational equivalence as

CHd(X) :=
(
⊕

V ⊂X
Z · [V ]

)
/( rational equivalence ),

where V runs over all closed irreducible subvarieties of X of dimension d
(that is, over all points of dimension d of X), [V ] is just the formal group
generator corresponding to V , and the two combinations are called rationally
equivalent if there exists a combination W =

∑
l νl·[Wl] of (d+1)-dimensional

irreducible subvarieties on X × P1 such that W |X×{0} =
∑

i λi · [Vi] and
W |X×{1} =

∑
j µj · [Uj] (one can give the precise meaning to the notation

W |X×{a}).
Have the action of various operations on the Chow groups.
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Push-forwards
Let f : X → Y be a map of algebraic varieties. It is called projective, if

it can be decomposed as:

X
j !!

f
""!!!!!!!!!!!! Y × Pn

π
##

Y

where j is a closed embedding.
Examples:

1) Closed embedding is a projective map.

2) A1 → Spec(k) is not a projective map.

3) X is projective (a closed subvariety in projective space), then any
f : X → Y is projective.

Roughly speaking, f is projective if all the fibers are projective varieties.
If f is projective we have push-forward maps

f∗ : CHd(X)→ CHd(Y ),

where if V ⊂ X is closed irreducible subvariety of X, and U ⊂ Y is its image
under f , then

f∗([V ]) :=

{
0, if dim(U) < dim(V );
deg(k(V )/k(U)) · [U ], if dim(U) = dim(V ).

The coefficient deg(k(V )/k(U)) here is just the “number of preimages” of
the “sufficiently generic” point of U .

One can prove that in the case of projective map such definition respects
the rational equivalence.

Warning: if f is not projective one can try to define f∗ by the same
formula, but the rational equivalence will not be respected.

Pull-backs
Together with the dimensional notations one can use the codimensional

ones. Namely, codim(V ⊂ X) = dim(X) − dim(V ), and we will denote the
same Chow groups in two ways:

CHd(X) = CHdim(X)−d(X).
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Variety X is called smooth if locally it can be defined by (n − dim(X))
equations f1, . . . , fn−dim(X) in some An, so that the matrix

(
∂fi
∂xj

)
has (max-

imal possible) rank (n− dim(X)) everywhere on X.
Examples:

1) Projective space is smooth.

2) q-nondegenerate quadratic form, then the respective projective quadric
Q is smooth. If q is degenerate, then Q is not smooth.

3) Spec(k[x, y]/(y2 − x3)) is not smooth (singularity at (0, 0)).

If Y is smooth, one has pull-back maps

f∗ : CHc(Y )→ CHc(X).

For arbitrary f it is not easy to see, how f∗ acts on classes of subvarieties,
but if f is smooth morphism (roughly speaking, all the fibers are smooth
varieties)(or even flat morphism), then f∗([U ]) = [f−1(U)].

For arbitrary varieties X and Y one has the external product

CHa(X) × CHb(Y ) ×→ CHa+b(X × Y ),

given by [V ] × [U ] 3→ [V × U ]. If now X is smooth we can combine this
product with the pull-back along the diagonal morphism ∆ : X → X × X
to get a product structure on CH∗(X).

CHa(X)× CHb(X)
× !!

· $$"""""""""""""""
CHa+b(X ×X)

∆∗

##

CHa+b(X).

This gives the structure of the associative commutative ring on CH∗(X) for
smooth variety X.

Category of Chow motives
Category of correspondences
Define C(k) - the category of correspondences:
Ob(C(k)) = { smooth proj. var.overk} 7 [X] - typical representative.
MorC(k)([X], [Y ]) = CHdim(X)(X ×Y ), where we assume X - connected.
composition:
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Let ϕ ∈ MorC(k)([X], [Y ]),ψ ∈ MorC(k)([Y ], [Z]), in other words, ϕ ∈
CHdim(X)(X × Y ), ψ ∈ CHdim(Y )(Y × Z).

Consider the natural projections

X × Y × Z
πX,Y

%%##########
πX,Z

##

πY,Z

&&$$$$$$$$$$

X × Y X × Z Y × Z.

Then the composition is defined as:

ψ ◦ ϕ := ((πX,Z)∗((πX,Y )∗(ϕ) · (πY,Z)∗(ψ)).

It follows from the standard properties of pull-backs and push-forwards, that
this operation is associative.

In particular, one gets the associative ring structure on CHdim(X)(X×X).
Warning: do not mess it with the product ring structure on CH∗(X×X) - our
new composition product is almost never commutative, while the product
structure is.

Have a natural functor

Sm.Proj./k
C→ C(k)

from the category of smooth quasiprojective varieties over k to C(k), where
X 3→ [X], and (f : X → Y ) 3→ [Γf ], where Γf ⊂ X × Y is the graph of the
map f . It is not difficult to check that this is really a functor (respects the
composition).

Category of correspondences has a structure of tensor additive category,
where [X]⊕ [Y ] := [X

∐
Y ] (the class of the disjoint union), and [X]⊗ [Y ] :=

[X × Y ].
Now, one can define the category of effective Chow-motives over k as the

Karoubian envelope of C(k):

Choweff (k) := Kar(C(k)),

where the Karoubian (=pseudo-abelian) envelope of an additive category C
is defined as follows. p ∈ EndC(A) is called projector, if p ◦ p = p. The
Kar(C) is a category such that

Ob(Kar(C)) = {(A, p), A ∈ Ob(C), p ∈ EndC(A) is a projector }.

MorKar(C)((A, p), (B, q)) = q ◦MorC(A,B) ◦ p ⊂MorC(A,B),
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and the composition is induced by that in C.
There is natural functor C(k) Kar→ Choweff (k) sending [X] to the pair

([X], id), and the structure of tensor additive category descends from C(k) to
Choweff (k). The composition of functors C and Kar gives a motivic functor
from the category of smooth projective varieties over k to the category of
the effective Chow motives.

C(k)
Kar

&&%%%%%

Sm.Proj./k

C ''######

M
!! Choweff (k).

For the smooth projective variety X we will call its image M(X) - the motive
of X.

Lecture 3

Motives of quadrics

We have a motivic functor

Sm.Proj./k
M→ Choweff (k),

which provides each smooth projective variety with its invariant the motive.
In Choweff (k) we get new objects - the direct summands in the mo-

tives of smooth projective varieties. In particular, M(P1) will be decom-
posable there. Notice, that M(P1) is given by the pair ([P1], [∆(P1)] ∈
CH1(P1 × P1)), but in CH1(P1 × P1) the class [∆(P1)] is equal to the sum
[pt × P1] + [P1 × pt] of two mutually orthogonal projectors (with respect
to the composition operation ◦), where pt is any k-rational point on P1.
Thus, M(P1) = ([P1], [P1 × pt]) ⊕ ([P1], [pt × P1]). The first summand here
is isomorphic to M(Spec(k)) and will be denoted Z(0)[0] (or, simply, Z) -
the trivial Tate-motive, and the second is denoted Z(1)[2] - the Tate-motive.
Choweff (k) is tensor additive category with M(X) ⊕M(Y ) = M(X

∐
Y ),

and M(X) ⊗ M(Y ) = M(X × Y ). Can define Tate-motive Z(n)[2n] as
(Z(1)[2])⊗n. It is given as a direct summand in the motive of (P1)n, but
will be also a direct summand in the motive M(X) of any smooth projec-
tive n-dimensional variety X which has a k-rational point - the respective
projector is given by [pt×X] (in reality, you just need a zero-cycle of degree
1).
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Inside Choweff (k) you will meet only Tate motives Z(n)[m] with m =
2n. But Choweff (k) is naturally a full additive subcategory of the bigger
triangulated category of motives DMeff

− (k), and the latter category already
contains Tate-motives Z(n)[m] with all possible m and n. This is why we
will keep both numbers in the notation of Tate-motives, although, in our
situation, these numbers are not independent. We get

M(P1) = Z⊕ Z(1)[2].

And, in the same way,

M(Pr) = Z⊕ Z(1)[2] ⊕ . . .⊕ Z(r)[2r].

with the projectors [Ps × Pr−s], for 0 ! s ! r.
Connection to Chow groups and motivic cohomology
For smooth projective varieties one can naturally identify:

CHn(X) = HomChoweff (k)(M(X), Z(n)[2n]);

CHn(X) = HomChoweff (k)(Z(n)[2n],M(X)).

and since Choweff (k) is a full subcategory of DMeff
− (k), the former group

can be identified with HomDMeff
− (k)(M(X), Z(n)[2n]) = H2n,n

M (X, Z) - the
motivic cohomology. Thus we see that

CHn(X) = H2n,n
M (X, Z).

Quadrics
The motive of a quadric is the simplest when the quadric is completely

split. In this case, it can be decomposed into the direct sum of Tate-motives.

M(Q) = ⊕[ dim(Q)
2 ]

i=0 (Z(i)[2i] ⊕ Z(dim(Q)− i)[2 dim(Q)− 2i])

The respective projectors have the form [li × hi] and [hi × li], where hi is
a plane section of codimension i on Q, and li is a projective subspace of
dimension i on Q (which exists since Q is completely split). In particular,
one can observe that the motive of odd-dimensional split quadric coincides
with the motive of the projective space of the same dimension, although,
as algebraic varieties they are not isomorphic (when dimension > 1). This
shows that the variety cannot be reconstructed from its motive, in general.
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Using the fact that

HomChoweff (k)(Z(i)[2i], Z(j)[2j]) =

{
0, i .= j;
Z, i = j.

we can compute Chow groups of Q:

CHi(Q) =






Z, 0 ! i ! dim(Q), i .= dim(Q)/2;
Z⊕ Z, i = dim(Q)/2;
0, otherwise.

Examples:

1) C - split conic, M(C) = Z⊕ Z(1)[2];

2) Q - split 2-dimensional quadric, M(Q) = Z⊕Z(1)[2]⊕Z(1)[2]⊕Z(2)[4].

What if quadric is not completely split, but just isotropic? Let q = H ⊥
q′. Then

M(Q) = Z⊕M(Q′)(1)[2] ⊕ Z(dim(Q))[2 dim(Q)]

Applying inductively this fact one gets the case of the split quadric above.
Also, this shows that the motive of a quadric can be expressed in terms of
the Tate-motives and the motive of the anisotropic part of it.

But what if the quadric is anisotropic, can we still say something about
its motive?

Consider the case of a conic C. First of all we observe the following
simple fact:

C has a k - rational point ⇔ C ∼= P1

Indeed, the (⇐) conclusion is obvious, since P1 has plenty of k-rational
points. Conversely, let x ∈ C be some k-rational point. Then C is naturally
identified with the P1 of projective lines on P2 passing through x ⊂ C ⊂ P2.
Thus, if conic is somewhat interesting (do not coincide with the projective
line, at least), then it has no rational points.

Suppose that C is arbitrary conic given by some equation Ax2
o + Bx2

1 +
Cx2

2. We can divide it by A and get x2
0− ax2

1− bx2
2 (a = −B/A, b = −C/A),

so that our form is 〈1,−a,−b〉. Then it is a subform of a Pfister form 〈〈a, b〉〉.
By the Main property of Pfister forms, for arbitrary field extension E/k,

〈〈a, b〉〉|E is isotropic ⇔ 〈〈a, b〉〉|E is completely split.
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Hence, this condition is also equivalent to: 〈1,−a,−b〉|E is isotropic. Really,
isotropy of 〈1,−a,−b〉|E implies isotropy of 〈〈a, b〉〉|E since the former is a
subform of the latter. In the other direction, if 〈〈a, b〉〉|E isotropic, then it is
completely split, that is, has a totally isotropic subspace of dimension 2, but
then such subspace should intersect non-trivially with the 1-codimensional
subform 〈1,−a,−b〉|E to produce isotropic vector for the latter.

Now, we can also remind, that for arbitrary field extension E/k,

〈〈a, b〉〉|E is completely split ⇔ {a, b}|E = 0.

This shows that our conic C{a,b} and the Pfister quadric Q{a,b} are the norm-
varieties for the pure symbol {a, b} ∈ KM

2 (k)/2. A variety X is called a
norm-variety for α ∈ KM

n (k)/r if for arbitrary field extension E/k, X|E has
E-rational point if and only if α|E = 0 ∈ KM

n (E)/r.
Exactly the same considerations show that for arbitrary subform p of

〈〈a1, . . . , an〉〉 of dimension > 1
2 dim(〈〈a1, . . . , an〉〉) = 2n−1, the respective

projective quadric will be a norm-variety for the symbol {a1, . . . , an} ∈
KM

n (k)/2. Notice that we have many different varieties corresponding to
the same symbol. It is clear that all of them have something in common.
And this something appears to be certain direct summand in their motives.

Consider again the case of 2-dimensional 2-fold Pfister quadric Q{a,b}.
Since determinant of 〈〈a, b〉〉 is 1, the projective lines on Q{a,b} split into two
families, each of which is naturally identified with C{a,b} (each line intersects
C{a,b} in a unique point - this defines the identification). This simultaneously
shows that Q{a,b} = C{a,b}×C{a,b} (since each point on Q{a,b} is determined
uniquely by the pair of projective lines on Q{a,b} (one from each of the two
families) passing through it), and identifies it with PC{a,b}(V) - the projec-
tivisation of certain 2-dimensional vector bundle on C{a,b} (since there is a
natural projection Q{a,b} → C{a,b} given by the lines of one of the families,
with the fibers - those lines). It follows from the general theory that the
motive of the projective bundle is a direct summand of several copies of the
motive of the base with various Tate-twists (for U ∈ Ob(Choweff (k)) we call
U(n)[2n] := U ⊗ Z(n)[2n] - the Tate-twist of U). In our situation, we get:

M(Q{a,b}) = M(C{a,b})⊕M(C{a,b})(1)[2].

This is the first example of the following general result obtained by M. Rost:

Theorem 0.5 (M. Rost) Let α ∈ KM
n (k)/2 be the pure symbol, and Qα be

the respective Pfister form. Then there exists such motive Mα ∈ Ob(Choweff (k))
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that
M(Qα) = ⊕2n−1−1

i=0 Mα(i)[2i],

(then it is easy to see that Mα|k = Z⊕ Z(2n−1 − 1)[2n − 2]), and Mα splits
into the sum of Tate-motives if and only if α = 0.

The motive Mα is called the Rost motive.
Examples:

1) n = 1, then M{a} = M(Spec(k
√

a));

2) n = 2, then M{a,b} = M(C{a,b}).

3) For n > 3, Mα is no longer represented by the motive of any algebraic
variety, but only by a direct summand in such.

M. Rost also had shown that Mα is a direct summand in the motives of
any subquadrics of Qα of codimension < 2n−1 (such subquadrics are called
Pfister neighbours). Let qα be n-fold Pfister form, p ⊂ qα a subform of
dimension 2n−1 + m, m > 0, and p⊥ be the complimentary form (qα = p ⊥
p⊥). Then

M(P ) = ⊕m−1
i=0 Mα(i)[2i] ⊕M(P⊥)(m)[2m].

And the appearance of Mα in this decomposition explains why all such
quadrics are the norm-varieties for the pure symbol α. Namely, the exis-
tence of a rational point on P is equivalent to M(P ) containing Tate-motive
Z as a direct summand (follows from the Theorem of Springer), and is fur-
ther equivalent to Mα containing such a summand - equivalent to Mα being
split, which happens if and only if α = 0.

Applying the above statement inductively, one gets that the motive of
an excellent quadric is a sum of Rost-motives (of different foldness).

Examples:

1) The motive of 3-fold Pfister form Q{a,b,c} can be visualised as

•

•

M{a,b,c}

•
M{a,b,c}(1)[2]

•
M{a,b,c}(2)[4]
• • •

• M{a,b,c}(3)[6]

where each • represents a Tate-motive over k, ranging from Z on the
left to Z(6)[12] on the right, and each pair of connected •’s represents
the copy of the Rost-motive M{a,b,c}(i)[2i].
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2) Let q be 5-dimensional excellent form 〈1,−c, ac, bc,−abc〉, then M(Q)
can be visualised as

•

M{a,b,c}

•
M{a,b}(1)[2]

• •

3) Let q be 11-dimensional excellent form (〈〈a, b, c, d〉〉⊥−〈〈a, b, c〉〉⊥〈〈a, b〉〉⊥
−〈1〉)an. (we assume a, b, c, d algebraically independent). Then M(Q)

looks as
•

M{a,b,c,d}

•

M{a,b,c,d}(1)[2]

•

M{a,b,c,d}(2)[4]

•
M{a,b,c}(3)[6]

•
M{a,b}(4)[8]

• • • • •

Hypothetically, the Rost-motives are the only possible binary direct sum-
mands (that is, motives, which split into the direct sum of exactly 2 Tate-
motives over k) in the motives of quadrics, and the excellent forms are the
only forms whose motives split into binary direct summands.

Motivic decomposition type

Definition 0.6 For the quadric Q let us denote as Λ(Q) the set of Tate-
motives in the decomposition of its motive over k:

M(Q|k) = ⊕λ∈Λ(Q)Z(iλ)[2iλ].

Then for any direct summand N of M(Q) we can identify the set Λ(N) of
Tate-motives in the decomposition of N |k with the subset of Λ(Q). We say
that λ ∈ Λ(Q) and µ ∈ Λ(Q) are connected, if for any direct summand N
of M(Q), λ ∈ Λ(N) ⇔ µ ∈ Λ(N). The presentation of Λ(Q) as the disjoint
union of its connected components is called motivic decomposition type of
Q - MDT (Q).

The motivic decomposition type can be visualised as a picture of the same
sort as above.

Examples:

1) Let q = 〈〈a〉〉 · 〈b, c, d, e〉, where a, b, c, d are algebraically independent.
Then M(Q) splits into the sum of two (isomorphic up to Tate-shift)
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indecomposable direct summands, and MDT (Q) looks as

•

•

N

• • • • •

•
N(1)[2]

2) Let q be Albert form 〈a, b,−ab,−c,−d, cd〉. Then M(Q) is indecom-
posable, and MDT (Q) consists of one connected component:

•

• • • •

•

3) Let q be 9-dimensional form (〈〈a, b, c〉〉 ⊥ −〈1,−d,−e〉)an, where a, b, c, d, e
are algebraically independent. Then MDT (Q) looks as:

• • • • • • • •

4) Let q be 9-dimensional form 〈〈a〉〉 · 〈b, c, d, e〉 ⊥ 〈1〉, where a, b, c, d, e are
algebraically independent. Then MDT (Q) looks as:

• • • • • • • •

Splitting pattern
Another discrete invariant of quadrics is the splitting pattern invariant.

Introduced by M. Knebusch, U. Rehmann and J. Hurrelbrink, it measures
what are possible Witt-indices iW (q|E) of our form over all possible field
extensions E/k. One gets the increasing sequence of natural numbers j0 <
j1 < j2 < . . . < jh - the possible values of iW (q|E). The numbers il :=
jl − jl−1, l " 1 are called the higher Witt indices. Assuming q-anisotropic
(j0 = 0), the sequence (i1, i2, . . . , ih) is called the splitting pattern SP (Q).
The number h is called the height of Q.

Examples:

1) For the n-fold Pfister form qα, SP (Qα) = (2n−1), and the height is 1,
since the Pfister form becomes completely split as soon as it is isotropic.
The Pfister quadrics and the subquadrics of codimension 1 in them are
the only examples of (anisotropic) quadrics of height 1.
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2) For Albert form q = 〈a, b,−ab,−c,−d, cd〉, we have SP (Q) = (1, 2),
and h(Q) = 2.

3) For the generic form q = 〈b1, . . . , bm〉, where b1, . . . , bm are algebraically
independent, SP (Q) = (1, 1, . . . , 1), and h(Q) = [m/2].

4) For the form q = 〈〈a1, . . . , an〉〉·〈b1, . . . , b2r〉, where a1, . . . , an, b1, . . . , b2r

are algebraically independent, SP (Q) = (2n, 2n, . . . , 2n), and h(Q) =
r.

5) An (anisotropic) excellent form q of dimension 19 has the splitting
pattern (3, 5, 1) and height 3.

It is an important problem in the theory of quadratic forms to find all the
possible values of the invariants MDT (Q) and SP (Q). Among the partial
results I should mention the Theorem of N. Karpenko, which claims that
(i1(q)−1) should always be a remainder of the division of (dim(q)−1) by some
power of 2. Although, we understand MDT and SP to some extent, there is
no even hypothetical description of their possible values. Nevertheless, the
interaction between the splitting pattern and motivic decomposition type
invariants provides a lot of information about both of them. This suggests
that one should try to embed them as faces into some larger invariant, where
one can expect to have more structure. In the next lecture we will introduce
such big invariant of geometric origin, called Generic discrete invariant of
Q.

Lecture 4

Generic discrete and elementary discrete invariants of quadrics

On the previous lecture the two discrete invariants of quadrics were in-
troduced: the motivic decomposition type and the splitting pattern. We will
show that both these invariants live inside some big discrete invariant of
geometric origin as (rather small) faces. The idea here is, instead of study-
ing the faces, to study the whole invariant, since it should posses more
structure. Let us start with MDT (Q). This invariant measures what are
possible decompositions of M(Q), that is, what kind of projectors we have
in EndChoweff (k)(M(Q)).
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Rost Nilpotence Theorem
The following result of M. Rost is central here:

Theorem 0.7 (RNT)

Ker(EndChoweff (k)(M(Q)) ac→ EndChoweff (k)(M(Q|k))

consists of nilpotents.

This implies that any projector in the image of ac can be lifted to a pro-
jector in EndChoweff (k)(M(Q)), and two such liftings produce direct sum-
mands which are isomorphic as objects of Choweff (k). So, to know the
decomposition of M(Q) it is sufficient to know the

image(ac) = image(CHdim(Q)(Q×Q)→ CHdim(Q)(Q×Q|k)).

Consider for simplicity the case dim(Q)-odd (the other one can be done
similarly). Then 2·CHdim(Q)(Q×Q|k) ⊂ image(ac), since CHdim(Q)(Q×Q|k)
is additively generated by [li× hi], and 2 · li = hdim(Q)−i, which implies that
[hdim(Q)−i × li] ∈ image(ac). Thus, after all, we need to know only the

image(CHdim(Q)(Q×Q)/2 ac→ CHdim(Q)(Q×Q|k)/2).

Example: Let dim(Q) is odd. Then M(Q) is indecomposable if and
only if the image above consists of just Z/2 · [∆Q].

Aside: RNT shows that M(Q) does not contain phantom direct sum-
mands. That is, if N is a direct summand, and N |k = 0, then N = 0.

RNT is generalised to the case of arbitrary projective homogeneous va-
riety by V. Chernousov, A. Merkurjev and S. Gille. So, the motives of these
varieties also have no phantom direct summands.

Hypothetically, NT should hold for arbitrary smooth projective variety,
and so there should be no phantom objects in Choweff (k) at all. But this
is a very strong and complicated Conjecture (related to the Conjecture of S.
Bloch). Notice, that in DMeff

− (k) there is plenty of phantom objects, and
many of these were successfully used (most notably, by V. Voevodsky), but
they are infinite dimensional and do not live in Choweff (k).

Definition 0.8 Consider the following invariant of quadrics:

Q 3→ image(CH∗(Q×N )/2 ac→ CH∗(Q×N |k)/2), for allN.

We call it Generic discrete invariant of quadrics (in non-compact form).
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This invariant clearly contains MDT (Q). The disadvantage here is that one
has to consider infinitely many objects. But the invariant can be “compact-
ified”, and the above problem disappears.

To each smooth projective quadric Q one can assign the respective quadratic
Grassmannians:

Q 3→ G(i,Q) − Grassmannian of i− dim. planes on Q.

This is smooth projective (homogeneous) variety, and E-rational points of
G(i,Q) are i-dimensional planes li ⊂ Q|E.

We get varieties:

Q = G(0, Q), G(1, Q), . . . , G(d,Q), whered =
[
dim(Q)

2

]
.

Examples:

1) dim(q) = 4, q = 〈a, b, c, d〉. Then G(1, Q) = C{−ab,−ac} ×Spec(k)

Spec(k
√

abcd) - the conic over the quadratic extension. So, G(1, Q)|k =
P1 ∐

P1.

2) dim(q) = 5, q = 〈a, b, c, d, e〉. Consider the auxiliary form p = q ⊥
〈−det(q)〉 = 〈a, b, c, d, e,−abcde〉. Then ∃λ (for example = abc), such
that λ · p = 〈A,B,−AB,−C,−D,CD〉 is an Albert form, correspond-
ing to the bi-quaternion algebra Al = Quat({A,B}, k)⊗kQuat({C,D}, k).
Then G(1, Q) = SB(Al) is a Severi-Brauer variety for the algebra Al.
In particular, G(1, Q)|k = P3.

3) Let qα be the 3-fold Pfister form 〈〈a, b, c〉〉. Then G(3, Qα) = Qα
∐

Qα.

It appears that M(Q×N ) can be decomposed into the direct sum of the
motives of G(i,Q) with various Tate-shifts.

Example:

M(Q×Q) = M(Q)⊕ (M(G(1, Q)) ⊕M(G(1, Q))(1)[2])
⊕M(Q)(dim(Q))[2 dim(Q)].

Consequently, to know

image(CH∗(Q×N )/2 ac→ CH∗(Q×N |k)/2), for all N

is the same as to know

image(CH∗(G(i,Q))/2 ac→ CH∗(G(i,Q)|k)/2), for 0 ! i ! d =
[
dim(Q)

2

]
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Definition 0.9 This invariant is called Generic discrete invariant (in com-
pact form) GDI(Q).

It contains not just MDT (Q), but the SP (Q) as well. Recall, that the
Splitting Pattern of Q measures what are possible Witt-indices of q|E for all
possible field extensions E/k. It follows from the Specialisation theory of M.
Knebusch, that it is sufficient to consider only the fields E = k(G(i,Q)), 0 !
i ! d - the generic points of quadratic Grassmannians. In the end, one needs
only to know, for which i there is a rational map G(i,Q) ##$ G(i + 1, Q),
or, which is the same, the rational section of the projection F (i, i + 1, Q)→
G(i,Q) (from the variety of flags (li ⊂ li+1) to the Grassmannian of i-planes
on Q). Due to the Theorem of Springer (claiming that Q is isotropic ⇔ it
has a zero-cycle of degree 1) this can be reduced to the existence of cycles
of certain type in CH∗(F (i, i + 1;Q))/2. But F (i, i + 1;Q) is a projective
bundle over G(i + 1, Q) and, consequently, M(F (i, i + 1;Q)) is a direct sum
of M(G(i+ 1, Q)) with various Tate-shifts. Thus, GDI(Q) contains SP (Q).

Varieties G(i,Q) are geometrically cellular, that is, over k they can be
“cut” into pieces isomorphic to affine spaces Arj - Schubert cells (to define
such a cell, fix a complete flag π0 ⊂ π1 ⊂ . . . ⊂ πd, and natural numbers
n0, . . . , nd, then the Cell(n0, . . . , nd) is given by the locus of those i-planes
li that dim(li ∩ πj) = nj). Thus, M(G(i,Q)|k) is (canonically!) a sum of
Tate-motives, and CH∗(G(i,Q)|k) is a free abelian group with the canonical
basis corresponding to Schubert cells

Cell 3→ [Cell] ∈ CH∗(G(i,Q)|k).

The Schubert cells are parametrised by some sort of Young diagrams, and
this way the ring CH∗(G(i,Q)|k)/2 appears as quite combinatorial object.
GDI(Q, i) is the subring of CH∗(G(i,Q)|k)/2 consisting of elements defined
over k. But the ring CH∗(G(i,Q)|k)/2 is still rather large. For example, for
i = d it has the rank = 2d+1. Need something handier. For this purpose there
is EDI(Q) - Elementary discrete invariant of Q. It does not determine the
whole image(ac), but just checks if some particular good classes are in the
image, or not. These classes are elementary classes. To define them , start
with the Grassmannian of 0-dimensional planes G(0, Q), that is, with the
quadric Q itself. Elementary classes on Q are just the classes l0, l1, . . . , ld in
CH∗(Q|k)/2 - these are the only interesting classes there (their k-rationality
measures only the Witt-index of q). Now, the elementary classes on other
Grassmannians can be produced from that on Q. Namely, we have natural
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projections:
Q

αi← F (0, i;Q) βi→ G(i,Q)

Definition 0.10 Define the elementary classes

yi,j := (βi)∗(αi)∗(lj) ∈ CHdim(Q)−i−j(G(i,Q)|k)/2.

EDI(Q) measures which of yi,j are defined over k.

Our elementary classes are numbered by 0 ! i, j ! d, so EDI(Q) can be
visualised as d × d square, where integral node is marked iff the respective
class yi,j is defined over k.

• • ◦ ... ◦ •

◦ • ◦ ... ◦ ◦

◦ ◦ ◦ ... ◦ ◦

... ... ... ... ... ...

◦ ◦ ◦ ... ◦ ◦

◦ ◦ ◦ ... ◦ ◦

j
!!

i

((

Here each row corresponds to a particular Grassmannian, and codimension
decreases up and right. SW corner is marked ⇔ Q is isotropic; SE corner is
marked ⇔ it is completely split.

Examples:

1) q-generic (〈a1, . . . , an〉/k = F (a1, . . . , an)). Then EDI(Q) is empty.

2) q-completely split ⇒ everything is marked.

3) qα is (anisotropic) n-fold Pfister form. Then the marked points will be
exactly those which live strictly above the main (NW-SE) diagonal. In
the case of n = 3 we get:

◦ • • •

◦ ◦ • •

◦ ◦ ◦ •

◦ ◦ ◦ ◦
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4) The EDI(Q) for the 10-dimensional excellent form looks as:

• • • • ◦

• • ◦ • ◦

• • ◦ ◦ ◦

◦ • ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

5) Let q = 〈a, b,−ab,−c,−d, cd〉 be an anisotropic Albert form. Then
EDI(Q) is

◦ ◦ •

◦ ◦ ◦

◦ ◦ ◦

The serious constraint on such marking is provided by the following:
Rule: • •

•

(())&&&

Usually, one cannot reconstruct GDI from EDI, but for i = d these two
invariants carry the same information due to the following result:

Theorem 0.11 GDI(Q, d) is generated as a ring by elementary classes con-
tained in it.

So, instead of studying the subrings of the ring of rank 2d+1 it is sufficient to
study the subset of the set of (d + 1) elements (0, 1, . . . , d), where j ↔ yd,j.
Moreover, the action of the Steenrod operations on GDI(Q, d) preserves
the elementary classes, and so, provides the action on EDI(Q, d). Hypo-
thetically, the restrictions coming from this action (j-defined,

(j
r

)
-odd ⇒

(j + r)-defined) are the only restrictions on the possible subsets.
For other Grassmannians nothing of this sort is true. In particular, the

elementary classes do not determine GDI, and the rigidity structure on GDI
should involve all the Grassmannians simultaneously (in the contrast to the
last Grassmannian being “self-sufficient”).

It is an interesting task to translate EDI into the classical quadratic
form theory language. Here the dots living below the auxiliary (SW-NE)
diagonal are better understood. For such classes (i ! j +1) the k-rationality
can be hypothetically expressed in terms of dimensions of B.Kahn. This
important discrete invariant of quadrics is defined as follows:
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Definition 0.12

dimIn(q) = min(dim(p)| q ⊥ −p ∈ In).

This invariant measures how far is our form from the given power of the
fundamental ideal of even-dimensional forms.

Conjecture 0.13 For i ! j + 1, the following conditions are equivalent:

yi,j is k − rational ⇔ dimIr(q) ! c,

where c = dim(Q)− 2j, and r = [log2(dim(Q)− i− j + 1)] + 2.

Notice, that the dimensions of B. Kahn one encounters here are all in
the stable range < 2n−1 (for such dimensions the closest point in In (and
the form p above) is unique - follows from the Arason-Pfister Hauptsatz,
claiming that the dimensions of anisotropic forms in In are either 0, or
" 2n). It is expected that unstable dimensions of B. Kahn should appear
when one considers invariant similar to GDI, but with CH∗ /2 substituted
by the ring of Algebraic Cobordism Ω∗ (see the next lecture).

The other half of EDI(Q) (i > j + 1) is substantially less understood,
and in the known examples the description here involves invariants similar
to the Kahn’s dimensions, but of more complicated nature.

Lecture 5

Algebraic Cobordism. Landweber-Novikov and Steenrod operations.
Symmetric operations.

Let k be a field of characteristic 0, and (Sm.Q.− P.)/k be the category
of smooth quasi-projective varieties over k.

The generalised oriented cohomology theory is a contra-variant functor

(Sm.Q.− P.)/k A∗
−→ {Z− graded rings }

X 3→ A∗(X)

(f : X → Y ) 3→ (f∗ : A∗(Y )→ A∗(X))

together with the push-forward morphisms f∗ : A∗(X) → A∗−d(Y ) for pro-
jective equidimensional maps f : X → Y of relative dimension d.

All these data should satisfy certain compatibility axioms.
Generalised oriented cohomology theory possesses Chern classes.
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Chern classes
Let L/X be line bundle. Consider the zero section j : X ↪→ L. Then one

can assign to L its first Chern class c1(L) := j∗j∗(1A
X) ∈ A1(X).

Now, if U is some vector bundle on X, by the projective bundle axiom of
the generalised oriented cohomology theory,

A∗(PX(U∨)) = ⊕dim(U)−1
i=0 ρi · A∗(X),

where ρ := c1(O(1)), and U∨ is the vector bundle dual to U . In particular,
there is the unique relation:

ρdim(U) − λ1 · ρdim(U)−1 + λ2 · ρdim(U)−2 − . . . (−1)dim(U)λdim(U) = 0,

for certain λi ∈ Ai(X). These coefficients are called the Chern classes of
the bundle U : ci(U) := λi (we assume c0 = λ0 = 1). Denote as c•(U) the
total Chern class

∑
i!0 ci(U). These classes satisfy the Cartan formula: if

0→ U1 → U2 → U3 → 0 is a short exact sequence, then

c•(U1) · c•(U3) = c•(U2).

Cartan formula permits to define Chern classes on the formal differences
V − U of vector bundles, that is, on K0.

Examples (of theories):

1) CH∗ - the Chow groups.

2) K0[β,β−1] - the algebraic K0 (it is convenient to add the formal in-
vertible parameter β to it).

Among such theories there is the universal one Ω∗ called Algebraic Cobor-
dism. This theory was constructed by M. Levine and F. Morel (further
simplified by M. Levine and R. Pandharipande).

Ω∗(X) is additively generated by the classes [v : V → X], where V is
smooth and v is projective. One imposes certain relations:

1) Elementary cobordism relations
The classes [v0 : V0 → X] and [v1 : V1 → X] are elementary cobordant,

if there exists projective map w : W → X × P1 from a smooth variety W ,
which is transversal to X × {0} ↪→ X × P1 and X × {1} ↪→ X × P1 and
w|w−1(X×{0}) = v0, w|w−1(X×{1}) = v1.
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We recall that the morphisms f, g from the Cartesian square

B ×A C
g′−−−−→ C

f ′
3

3f

B −−−−→
g

A

with A,B,C - smooth are called transversal, if the natural map of tangent
bundles (f ′)∗TB ⊕ (g′)∗TC → (f ◦ g′)∗TA is surjective. Then B ×A C is
smooth, and the sequence

0→ TB×AC → (f ′)∗TB ⊕ (g′)∗TC → (f ◦ g′)∗TA → 0

is exact. The transversal Cartesian squares behave especially well with re-
spect to the pull-back and push-forward morphisms, and they are used in
the definition of the generalised oriented cohomology theory.

In topology these would be all the relations, but in algebraic geometry
one has to impose more.

2) Double point relations (following M. Levine - R. Pandharipande) Let
[w : W → X×P1] be such projective map that w is transversal to X×{0}→
X × P1, where w|w−1(X×{0}) = v0 : V0 → X, and w−1(X × {1}) consists of
two smooth components V1,a and V1,b intersecting transversally on W at
U = V1,a ∩ V1,b. Let N = NU⊂V1,a be the normal bundle (it is easy to see
that then NU⊂V1,b = N−1). Then we impose the relation:

[v0 : V0 → X] = [v1,a : V1,a → X] + [v1,b : V1,b → X]− [PU (N ⊕O)→ X].

Notice, that this relation is symmetric with respect to a↔ b, since PU (N ⊕
O) is isomorphic to PU (O ⊕N−1).

One generates all the relations in Ω∗ by applying the push-forward oper-
ation f∗ with respect to all proper morphisms f : X → Y to the two types
of relations above, where f∗([v : V → X]) := [f ◦ v : V → Y ]. As was men-
tioned, the resulting theory Ω∗ is universal oriented generalised cohomology
theory. The universality follows from the fact that oriented theories have
push-forwards: the canonical map

Ω∗(X)→ A∗(X)

is given by
[v : V → X] 3→ (vA)∗(1A

V ) ∈ Acodim(V ⊂X)(X).
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Remark: It should be mentioned, that it is quite nontrivial to define the
pull-back operations f∗ on Ω∗. One can find details in the book of M. Levine
and F. Morel.

Properties of Ω∗

(1) Ω∗(Spec(k)) = MU2∗(pt) = L, where MU is the C-oriented cobor-
dism in topology, and L is the Lazard ring - the coefficient ring of the univer-
sal formal group law. In particular, we see that the result does not depend
on k (it does not matter, if k is algebraically closed, or not).

Formal group laws
(commutative, 1-dimensional) formal group law is given by the following

data: (R,F (x, y)), where R is a coefficient ring (associative, commutative,
unital), and F (x, y) ∈ R[[x, y]] is a power series, satisfying:

(i) F (x, 0) = x, F (0, y) = y;

(ii) F (x, y) = F (y, x) - commutativity;

(iii) F (F (x, y), z) = F (x, F (y, z)) - associativity.

From conditions (i) and (ii) it follows that F (x, y) = x+y +
∑

i,j!1 ai,jxiyj ,
with ai,j = aj,i.

Examples:

1) Additive group law: Fa(x, y) = x + y with R-any ring;

2) multiplicative group law: Fm(x, y) = x + y − β · xy, where β ∈ R is
invertible.

Among the group laws there is the universal one (RU , FU (x, y)) such that
there is 1− 1 correspondence

{ f.g.laws (R,F (x, y))}↔ { ring homomorphisms RU
fF→ R},

where F (x, y) = fF (FU (x, y)). Clearly, it is sufficient to take

RU := Z[ai,j , i, j " 1]/(assoc., comm.)

with the FU = x+y+
∑

i,j!1 ai,jxiyj . The coefficient ring RU of the universal
formal group law is called the Lazard ring L. The following important result
is due to Lazard:
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Theorem 0.14

L = Z[z1, z2, . . .], with deg(zl) = l, where deg(ai,j) = i + j − 1.

Projective bundle axiom implies that A∗(P∞) = A∗[[t]], where A∗ :=
A∗(Spec(k)), and t = c1(O(1)). Consider the Segre embedding

P∞ × P∞ Segre−→ P∞.

It induces the pull-back homomorphism

A∗[[x, y]] Segre∗←− A∗[[t]].

It is easy to check that the pair (A∗, FA(x, y)), where FA(x, y) := (Segre)∗(t)
will be a formal group law. Thus to each generalised cohomology theory one
can assign the formal group law

A∗(X) 3→ (A∗, FA(x, y)).

Examples:

1) CH∗ 3→ (Z, Fa(x, y));

2) K0[β,β−1] 3→ (Z[β,β−1], Fm(x, y)).

Due to the result of M. Levine and F. Morel, the theories CH∗ and K0[β,β−1]
are the universal ones among the additive and multiplicative theories, respec-
tively.

The formal group law assigned to the theory A∗ describes how the 1-st
Chern class behaves with respect to ⊗ operation for linear bundles:

cA
1 (L⊗M) = FA(cA

1 (L), cA
1 (M)).

It appears that the formal group law assigned to the Algebraic Cobordism
theory Ω∗ will be the universal one. That is, FΩ(x, y) = FU (x, y), and
Ω∗(Spec(k)) = L. In particular, since Ω∗(Spec(k)) is additively generated
by the classes of smooth projective varieties over k, the universal constants
ai,j can be interpreted as Z-linear combinations of such classes.

Examples:

1) a1,1 = −[P1];
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2) a2,1 = [P1 × P1]− [P2].

In general, dim(ai,j) = i + j − 1.

(2) We have canonical map of theories pr : Ω∗ → CH∗ given by

[v : V → X] 3→ v∗(1V ) ∈ CHdim(V )(X).

There is the following important result of M. Levine and F. Morel:

Theorem 0.15
CH∗(X) = Ω∗(X)/L<0 · Ω∗(X).

Thus, CH∗ can be computed out of Ω∗.
Remark: The topological counterpart of this statement, as well as the

one with the motivic cohomology in place of the Chow groups are false.

Landweber-Novikov operations
Let R(σ1,σ2, . . .) ∈ L[σ1,σ2, . . .] be some polynomial, where we assign

grading: deg(σi) = i. Then one can define Landweber-Novikov operation

SR
L−N : Ω∗(X)→ Ω∗+deg(R)(X)

by the rule: SR
L−N ([v : V → X]) := v∗(R(c1, c2, . . .)), where ci = ci(Nv) ∈

Ωi(V ), and Nv := −TV + v∗TX - the virtual normal bundle.
There is another parametrisation of Landweber-Novikov operations - the

one using partitions. Partition is the non-ordered set of natural numbers
a = (a1, a2, . . . , am) with |a| =

∑
i ai. To each partition a one can assign the

minimal symmetric polynomial, containing the monomial b
a =

∏
i bai

i . This
polynomial can be expressed in terms of elementary symmetric polynomials
σi(b1, b2, . . .) on bi’s. Let Ra(σ1,σ2, . . .) be the respective expression. Then
one defines Sa

L−N : Ω∗(X)→ Ω∗+|a|(X) as SRa

L−N . Parametrised this way, the
Landweber-Novikov operations can be easily organised into the multiplicative
operation

STot
L−N :=

∑

a

b
a · Sa

L−N : Ω∗(X) → Ω∗(X)⊗Z Z[b1, b2, . . .].

Multiplicativity property means that

STot
L−N (x · y) = STot

L−N (x) · STot
L−N (y).
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Specialising bi to some values in L one gets the multiplicative operations
Ω∗(X)→ Ω∗(X).

Each multiplicative operation G : A∗(X)→ B∗(X) provides a homomor-
phism of formal group laws

γG : (A∗, FA(x, y))→ (B∗, FB(x, y)),

that is, the ring homomorphism G : A∗ → B∗ together with the (change of
parameter) power series γG(z) ∈ B∗[[z]] satisfying

G(FA)(γG(x), γG(y)) = γG(FB(x, y)).

Power series γG(z) is just the expression of G(cA
1 (L)) in terms of cB

1 (L)
(sufficient to know for L = O(1) on P∞). And the equation comes from the
fact that:

G(FA)(γG(cB
1 (L)), γG(cB

1 (M))) = G(FA)(G(cA
1 (L)), G(cA

1 (M))) =

G(FA(cA
1 (L), cA

1 (M))) = G(cA
1 (L⊗M)) =

γG(cB
1 (L ⊗M)) = γG(FB(cB

1 (L), cB
1 (M)))

For such operation to be stable (in certain sense) one needs the first
coefficient of γG(z) to be 1 (γG(z) = z + b1z2 + b2z3 + . . .). The total
Landweber-Novikov operation STot

L−N is the universal multiplicative stable
operation - here the coefficients b1, b2, . . . in the change of parameter are just
independent variables.

When R = σi (that is, a = (1, 1, . . . , 1) - i-times), we will denote the
respective operations Sσi

L−N simply as Si
L−N . One can organise Si

L−N into
the multiplicative operation S•

L−N =
∑

i S
i
L−N : Ω∗(X) → Ω∗(X). Clearly,

this is just the specialisation of STot
L−N at b1 = 1; bi = 0, i " 2.

Steenrod operations
Let pr : Ω∗(X) → CH∗(X) be the projection. The following result is due

to P. Brosnan, M. Levine and A. Merkurjev:

Theorem 0.16 There exists (unique) operation Si : CH∗(X)/2 → CH∗+i(X)/2
called Steenrod operation making commutative the following diagram:

Ω∗ Si
L−N−−−−→ Ω∗+i

pr

3
3pr

CH∗ /2 Si

−−−−→ CH∗+i /2.
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Both Steenrod and Landweber-Novikov operations commute with the
pull-back morphisms.

In a similar way one can construct reduced power operations

P i : CH∗(X)/l → CH∗+i(l−1)(X)/l

corresponding to other primes l. Here one should use Sa
L−N with

a = (l − 1, l − 1, . . . , l − 1) - i-times. In the algebro-geometric context these
operations were originally constructed by V. Voevodsky in a more general
situation of motivic cohomology.

Remark: Note, that if you choose some arbitrary partition a and ar-
bitrary number l, you, in general, will not be able to find any operation
CH∗ /l → CH∗+|a| /l making the respective diagram commutative.

Symmetric operations
It follows from the explicit construction of Steenrod operations by P.

Brosnan that Si|CHm /2 = 0, if i > m, and Sm|CHm /2 coincide with the
operation square % : CHm /2 → CH2m /2. It follows from the diagram
above that

(pr ◦ Si
L−N )(Ωm(X)) ⊂ 2 · CHm+i(X), for i > m, and

(pr ◦ (Sm
L−N −%))(Ωm(X)) ⊂ 2 · CH2m(X).

Thus, up to 2-torsion, we have well defined operations

φti−m
:=

pr ◦ Si
L−N

2
: Ωm(X)→ CHm+i(X)/(2 − tors.), for i > m, and

φt0 :=
pr ◦ (Sm

L−N −%)
2

: Ωm(X)→ CH2m(X)/(2 − tors.).

In reality, this operations can be lifted to some well-defined operations

Φtj : Ω∗ → Ω2∗+j.

To construct such operations consider the following objects. Let W →
X be some smooth morphism (roughly speaking, all the fibers are smooth
varieties) of smooth varieties. Denote as %(W/X) the relative square W ×X

W ; as %̃(W/X) the Blow-up variety Bl∆(W )⊂"(W/X), and as C̃2(W/X) the
quotient variety of %̃(W/X) under the natural (interchanging of factors)
Z/2-action. Notice, that the locus of fixed points on %̃(W/X) under our
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action will be the smooth (special) divisor of %̃(W/X) - the preimage of the
diagonal. Thus, C̃2(W/X) will be a smooth variety. These objects fit into
the diagram

PW (TW/X) j−−−−→ %̃(W/X) p−−−−→ C̃2(W/X)

ε

3
3π

3ξ

W −−−−→
∆

%(W/X) −−−−→ X.

Variety C̃2(W/X) has natural line bundle L such that p∗(L) = O(1) -
the canonical line bundle of the Blow-up variety. Denote ρ := c1(L−1) ∈
Ω1(C̃2(W/X)). When X = Spec(k), we will omit X in the respective no-
tations: %̃(W ), C̃2(W ). Notice, that C̃2(W ) is nothing else but Hilb2(W ) -
the Hilbert scheme of the length 2 subschemes on W .

Let v : V → X be the projective morphism of smooth varieties. We can
decompose it in the form V

g→ W
f→ X, where g is a regular embedding,

and f is smooth projective morphism. Then we get the following natural
diagram:

C̃2(V )
α
↪→ C̃2(W )

β
←↩ C̃2(W/X) γ→ X,

where all the maps are projective.
Symmetric operations will be parametrised by the power series q(t) ∈

L[[t]]:
Φq(t) : Ω∗(X) → Ω∗(X).

Φq(t)([v : V → X]) := γ∗β∗α∗(q(ρ)) ∈ Ω∗(X).

For given variety X we can extend symmetric operations by Ω∗(X)-linearity
on q(t), and assume that q(t) ∈ Ω∗(X)[[t]].

Properties:

(0)
Φq(t)(x + y) = Φq(t)(x) + Φq(t)(y) + q(0)xy

In particular Φq(t) is linear if q(0) = 0.

(1) Φq(t) commutes with the pull-back morphisms;

(2) If f : X ↪→ Y is a regular embedding with normal bundle Nf , and
q(t) ∈ Ω∗(Y )[[t]]. Then

Φq(t)(f∗(x)) = f∗Φf∗(q(t))·cΩ• (Nf )(t)(x),
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where cΩ
• (V)(t) =

∏
i(λi −Ω t), where λi ∈ Ω1 are roots of V, and −Ω

is the subtraction in the sense of the universal formal group law.

(3) Φq(t) is trivial on the classes of embeddings. Really, if v : V → X is an
embedding, we can take W = X, and then the variety C̃2(W/X) will
be empty. Thus, the symmetric operations provide the obstructions
for the cobordism class to be represented by the embedding.

(4) 2 · (pr ◦ Φtr)|Ωm = (−1)r · (pr ◦ Sr+m
L−N ). Thus, with the help of the

symmetric operations one can get cycles twice as small as with the help
of the Landweber-Novikov operations. This difference can be crucial
if one works with the varieties where the effects related to prime 2 are
important (like quadrics, for example).

Remark: Actually, the properties (0) − (3) determine the operations
Φq(t) uniquely up to renormalisation q(t) 3→ q(t) · r(t), for fixed r(t) ∈ L[[t]]
satisfying r(0) = 1.

The most interesting symmetric operations are not expressible in terms
of the Landweber-Novikov operations, and cannot be organised into the mul-
tiplicative operation. Nevertheless, some of them are, and these operations
are related to the Steenrod operations in Cobordism theory.

Lecture 6

u-invariants of fields.

In this lecture we will demonstrate the applications of the technique
discussed earlier to the u-invariants of fields.

Let k be a field. Define the u-invariant of k as

u(k) := max(dim(q)|q − anisotropic form over k).

Examples:

(1) k-algebraically closed, then u(k) = 1;

(2) u(R) =∞;

(3) k-finite, then u(k) = 2;

(4) k-local, then u(k) = 4;
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(5) k-global, then u(k) =

{
∞, if there are real embeddings k ⊂ R;
4, otherwise

.

(6) k = F [[t1, . . . , tn]], where F -algebraically closed, then u(k) = 2n.

So, in a certain sense, the u-invariant gives some idea how far our field is from
being algebraically closed (of course, it can see only one of the projections
of such a distance).

The natural question arises: what are the possible values of this invari-
ant?

It is easy to see that u(k) cannot take values 3, 5, and 7.

Example: Let us show that u(k) .= 3. Really, if u(k) would be 3, then
all the forms of dimension " 4 over k would be isotropic, and some form of
dimension 3 would be anisotropic. Up to a scalar, such form is 〈1,−a,−b〉
and the respective projective quadric is conic C{a,b}. But as we saw in
Lecture 3, such conic is isotropic if and only if the respective 2-dimensional
2-fold Pfister quadric Q{a,b} is (for example, because Q{a,b} = C{a,b}×C{a,b}).
This gives a contradiction, since dim(〈〈a, b〉〉) = 4.

“Conjecture” of Kaplansky (1953) predicted that the only possible values
are powers of two.

It was disproved by A. Merkurjev (1989), who constructed fields with
all even u-invariants. Further disproved by O. Izhboldin (1999), who con-
structed the field k with u(k) = 9 - the first odd value (> 1).

The basic ingredient of the construction is the

Merkurjev tower of fields
Let F be some field, and M ∈ N. We want to construct some extension

of F , where all forms of dimension > M will be isotropic. Suppose we have
just one form q. There are many extensions of F making q isotropic. For
example F - the algebraic closure of F . But we want the one which would
behave in a most gentle way with respect to everything. Such field is, of
course, F (Q) - the generic point of the quadric Q - any other field making q
isotropic will be a specialisation of this one. If we want to make two forms
q1, q2 isotropic, then we should use the field F (Q1 ×Q2), etc. ... .

Denote as J the set of all forms of dimension > M over F , and define
the new field F ′ by the formula

F ′ := lim
−→
I⊂J

F (×i∈IQi),
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where I runs over all finite subsets of J . This field has the property, that
any form q of dimension > M defined over F is isotropic over F ′. And it is
universal one among the extensions E/F with such property.

Starting with some field k, consider the sequence of fields

k = k0 ↪→ k1 ↪→ k2 ↪→ . . . ,

where ki+1 := (ki)′. Denote k∞ := lim→i ki. Then all the forms of di-
mension > M defined over k∞ are isotropic (since any such form is defined
on some finite level ki, and thus, becomes isotropic over ki+1). In other
words, u(k∞) ! M . But we would want the equality. For this we need some
anisotropic form p of dimension M over k∞. Better to have it already over
k, and then check that it stays anisotropic over k∞. Of course, to be able
to control this, one needs to know something interesting about p (not just
the fact that it is anisotropic). Formalising, we need a form p of dimension
M over k, and two properties A and B on the set of field extensions E/k,
where

A(E) is satisfied ⇔ p|E is anisotropic,

and A and B satisfy the following axioms:

(1) B ⇒ A;

(2) B(k) is satisfied;

(3) B(F ) is satisfied, dim(q) > M ⇒ B(F (Q)) is satisfied;

(4) B(Fj), for directed system of fields is satisfied ⇒ B(lim→j Fj) is sat-
isfied.

In this case, A(k∞) is satisfied, and u(k∞) = M .
So, we need only to choose the form p and the right property B.
Choice of Merkurjev:
To each quadratic form p one can assign its Clifford algebra C(q) defined

as Tk(Vp)/(v2 − p(v),∀v ∈ Vp) - the quotient of the tensor algebra of the
underlying vector space by the explicit relations. This algebra has a natural
Z/2-grading, and it “is not far” from being a central simple algebra. We
will be interested only in the case, where p ∈ I2, that is, dim(p) is even and
det±(p) = 1. In such a case, C(p) = Mat2×2(k) ⊗k C ′(p), where C ′ is a
central simple algebra over k. In the case M = 2n - even, Merkurjev have
chosen the following property:

B(E) is satisfied ⇔ C ′(p|E) is a division algebra.
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One starts with the generic quadratic form of dimension 2n from I2 - that is,
the form 〈a1, . . . , a2n−1, (−1)n

∏2n−1
i=1 ai〉 over the field k = F (a1, . . . , a2n−1).

Let us check the axioms:
1) B ⇒ A, since p = H ⊥ r ⇒ C ′(p) = Mat2×2(k)⊗k C ′(r).
2) B(k) is satisfied, since the C ′ of the generic form as above is division.
4) Clear, since zero divisors are defined on the finite level.
3) This is the only nontrivial part. The proof here is based on the Index

reduction formula of Merkurjev. This formula describes what happens to
the index of the central simple algebra over the generic point of a quadric.
It says that the index of the division algebra C over k(Q) can drop at most
by the factor 2, and the latter happens if and only if there is a k-algebra
homomorphism C0(q) → C, where C0(q) is the even Clifford algebra of q
(the degree zero part of C(q)).

Notice, that C0(q) is either a simple algebra, or a product of two isomor-
phic simple algebras, and if dim(p) = 2n is even, and dim(q) > dim(p), then
the size of each simple factor in C0(q) will be bigger than the size of C ′(p),
so we do not have maps C0(q) → C ′(p). Thus, the condition (3) is fulfilled,
and u(k∞) = 2n.

Another choice for even M
Let us make another choice of the property B. We will choose one

based on the EDI - the elementary discrete invariant of quadrics (see Lec-
ture 4). Namely, we start with the generic form p = 〈a1, . . . , a2n〉 over
k = F (a1, . . . , a2n), and the property:

B(E) is satisfied ⇔ yd,0(p|E) is not defined over k,

where d = [dim(P )/2] = n− 1.
In other words, EDI(p|E) should have the form

◦ ? ? ... ?

? ? ? ... ?

? ? ? ... ?

... ... ... ... ...

? ? ? ... ?

1) B ⇒ A since A(E) is satisfied if and only if y0,0 is not defined over E
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(we remind, that y0,0 is just the class of a rational point on P |E), and yi,j is
defined implies yl,j is defined for any l > i.

2) B(k) is satisfied, since EDI of the generic form is empty.
4) Follows, since for any X/k, CH∗(X|lim→j Fj) = lim→j CH∗(X|Fj )

(with any coefficients).
3) This is again the only nontrivial part, and it follows from the following:

Theorem 0.17 Let Y be smooth quasi-projective variety over some field
k of characteristic zero. Let Q be smooth projective quadric over k, and
y ∈ CHm(Y |k)/2 be some element. Suppose 2m < dim(Q). Then

y is defined over k ⇔ y|k(Q) is defined over k(Q).

Indeed, one just needs to take y = yd,0. Then m = dim(P ) − d = d <
dim(Q)/2 for any q bigger than p, and the Theorem implies what we need.

Shortly, we succeeded by controlling not the class y0,0, but the smaller
codimensional (!) class yd,0. The point, of course, is: the smaller is the
codimension of the cycle, the easier it is to control its rationality.

Notice, that the bound 2m < dim(Q) is optimal: for any pair dim(Q),m
not satisfying the inequality, one can find variety Y , cycle y, and a quadric
Q of needed codimension and dimension, so that y|k(Q) is defined over k(Q),
but y is not defined over k. Just take Q generic, and y = yd,0 × pt on
G(d,Q) × Pm−d.

The proof of the above Theorem uses the Symmetric operations in Al-
gebraic Cobordism (see Lecture 5). If y|k(Q) is defined over k(Q), then we
lift the respective element first to CH∗(Y ×Q)/2, and, finally, to Ω∗(Y ×Q)
using the natural surjections:

CH∗(Y |k(Q))/2 & CH∗(Y ×Q)/2 & Ω∗(Y ×Q).

Then we restrict it to Y × Qs for the subquadrics es : Qs → Q of different
dimensions, and apply the composition of the various symmetric operations
with the projection (πs)∗, after which we map the results to CH∗(Y )/2, and
add them with certain coefficients.

CH∗(Y |k(Q))/2 CH∗(Y ×Q)/2**** Ω∗(Y ×Q)****
e∗s !! Ω∗(Y ×Qs)

(πs)∗
##

CH∗(Y )/2

((

Ω∗(Y )**



272 A. Vishik

It appears, that if 2m < dim(Q), one can choose the coefficients in such a
way that the result will be independent of all the choices we made, and will
be equal to y when restricted to k.

Let me demonstrate the usefulness of our Theorem on the following:

Example: EDI of a Pfister forms. Let α ∈ KM
n (k)/2 be nonzero

pure symbol, and qα = 〈〈α〉〉 be the respective anisotropic Pfister form.
Then in EDI(Qα) the marked points will be the ones strictly above the
Main (NW-SE) diagonal. Indeed, consider Q = Qα, Y = G(i,Qα), y =
yi,j ∈ CHdim(Qα)−i−j(Y )/2. Since Qα|k(Qα) is completely split, all elemen-
tary classes on Qα are defined over this field. But then, by the Theorem,
those ones which are of sufficiently small codimension, i.e., exactly the ones
living strictly above the Main diagonal, are defined already over the base
field k. It remains to see that the other ones are not defined. Because of the
rule • •

•

((++&&&&&

it is sufficient to check that the NW-corner (yd,0) is not defined

over k. But if it would be defined, all the elementary classes yd,j on the
last Grassmannian G(d,Qα) would be defined. But the product

∏d
j=0 yd,j

of these classes is equal to the class of rational point on G(d,Qα)|k. So, this
would imply that Qα is completely split (we use the Theorem of Springer
here, claiming that the quadric has a rational point, if it has one of odd
degree). Thus, yd,0 is not defined over k, and EDI(Qα) is as we described:

◦ • • ... • •

◦ ◦ • ... • •

◦ ◦ ◦ ... • •

... ... ... ... ... ...

◦ ◦ ◦ ... ◦ •

◦ ◦ ◦ ... ◦ ◦

u-invariants 2r + 1, r " 3
The same ideas can be used to construct the fields with some odd u-

invariants. These values are 2r +1, r " 3. In the case of u-invariant 9 we get
method different from that of O.Izhboldin, and for r > 3 we get the values
not known before.
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For odd dimensional form p we cannot use the class yd,0 anymore, since
for q = p ⊥ 〈det±(p)〉, the class yd,0(p|k(Q)) will always be defined, although
dim(q) > dim(p). So, our condition should involve somehow the classes yi,0

i < d, since these are the only ones which are defined as soon as P has a
rational point.

We have the following:

Theorem 0.18 Let dim(p) = 2r + 1, r " 3, and EDI(P ) looks as

? ◦ ◦ ... ◦

◦ ◦ ◦ ... ◦

◦ ◦ ◦ ... ◦

... ... ... ... ...

◦ ◦ ◦ ... ◦

Suppose dim(q) > dim(p). Then EDI(P |k(Q)) has the same property.

The above theorem immediately implies that the property:

B(E) is satisfied ⇔ EDI(p|E) is as above

satisfies the axiom (3). Let us take the generic form p of dimension 2r + 1,
then all the other axioms will be readily fulfilled as well, and u(k∞) = 2r +1.

The proof of Theorem 0.18 uses certain extensions of Theorem 0.17, the
knowledge of action of the Steenrod operations on the elementary classes
and the fact that on the last Grassmannian the subring of k-rational cycles
is always generated by the k-rational elementary classes. So, it involves a
bit more than the case of even u-invariants.

In the end, let me mention some useful literature:
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